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Microsoft Hardware 

 PC accessories sold worldwide through retail and PC makers 
 Product design and management in Redmond, Washington 

 
 Specific product line and attributes are disguised here  

 



The problem space 

 Given conjoint analysis data … 
 
 

 We know how to optimize a product 
 
 

 But what about a product line? 
 
 

 If we knew about potential ideal lines, what could we do? 

1 773 28 -0.237 -0.351 0.588 -0.312 -0.397 0.431 0.278 0.981 
2 797 28 -0.513 -0.104 0.618 2.057 -0.966 -0.146 -0.944 3.685 
3 724 28 -0.852 0.666 0.185 -2.546 0.186 1.033 1.327 0.088 
4 803 28 -0.396 0.435 -0.039 5.356 -1.503 -1.644 -2.209 0.743 
5 532 28 -0.334 0.337 -0.003 -3.71 1.422 1.33 0.958 -0.336 
6 728 28 -0.786 0.469 0.317 0.518 -0.399 0.151 -0.27 0.42 



Business questions 

 We make X# products in a category … 
How many products should we make in the category? 
 

 Some people buy feature Y and some don’t … 
How many can we expect to want feature Y in an optimal portfolio? 
 

 We make products with such-and-such feature sets … 
Are there feature sets (products) we are missing? 
 

 Current retail price points are A, B, C … 
Do those price points match the optimal products? 
 
 



Intuition 

 Suppose we can derive a putative optimal line from data … 
 
 Sampling is not perfect 

Respondents do not answer perfectly 
Estimation will not fit the data perfectly 
Choices do not perfectly predict behavior 
 

 Implication: 
A single result will be imperfect 
 

 Use near-optimal line as a hypothesis to explore further 
 Repeat multiple times to get a sense of generalizability 



 
Method 



Overview of the approach 

 Collect CBC or ACBC data for a product category 
 Derive individual-level part worths using HB model 

 
 Iterate to fit many portfolio preference models: 

 Sample some of the data 
 Find a near-optimal portfolio to fit  
 Assess performance on the holdout data 
 Performance = Total Preference share vs. competition and “none” 

 
 Across the many models, inspect: 

 Size: how does preference increase with #products? 
 Features: how many people want each feature? 
 Products: are there gaps vs. current portfolio? 

How? 



Finding a near-optimal portfolio 

 Given several attributes with several levels … 
Many possible products, which combine for 
Exponentially many portfolios 
 

 For our problem: 
9 attributes with 2-7 levels  1080 possible products 
 

 For K products:  𝑁𝑜𝑓𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜𝑠 =  (𝑁𝑜𝑓𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠)!

𝑁𝑜𝑓𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠−𝐾 !𝐾!
 

 
 With 1080 products and K=10, NofPortfolios ≈ 1023 

 

 Implication:  
Use a method that can search a large space  Genetic Algorithm 



 
Genetic Algorithms 



Genetic algorithm overview 

Represent solution in 

terms of discrete parts, 

aka “genes” 

Preliminary 



Attr1Feat2 + Attr2Feat1 + Attr3Feat2 

From features to a list of candidate portfolios 

 Product = list of attribute/feature pairs 
 



Attr1Feat2 + Attr2Feat1 + Attr3Feat2 
 
Col 2 +  Col 5 +  Col 10 

 
 
[2,5,10] 

 
 

From features to a list of candidate portfolios 

 Product = list of attribute/feature pairs 
 

 Each attribute/feature maps to part 
worths located in a specific column 
 

 Product = vector of the column positions 
that represent its features 
 



Attr1Feat2 + Attr2Feat1 + Attr3Feat2 
 
Col 2 +  Col 5 +  Col 10 

 
 
[2,5,10] 

 
 

[2,5,10] + [1,5,9] + [2,6,10] + … 
 

From features to a list of candidate portfolios 

 Product = list of attribute/feature pairs 
 

 Each attribute/feature maps to part 
worths located in a specific column 
 

 Product = vector of the column positions 
that represent its features 
 

 Portfolio = a set of products 
 



Attr1Feat2 + Attr2Feat1 + Attr3Feat2 
 
Col 2 +  Col 5 +  Col 10 

 
 
[2,5,10] 

 
 

[2,5,10] + [1,5,9] + [2,6,10] + … 
 
#1:  [2,5,10] + [1,5,9] + [2,6,10] + … 
#2:  [1,5,9] + [2,6,10] + [1,6,9] + … 
…. 

From features to a list of candidate portfolios 

 Product = list of attribute/feature pairs 
 

 Each attribute/feature maps to part 
worths located in a specific column 
 

 Product = vector of the column positions 
that represent its features 
 

 Portfolio = a set of products 
 

 Candidates = a stack of portfolios, 
each with several products 



Genetic algorithm overview 

Represent solution in 

terms of discrete parts, 

aka “genes” 

Feature columns 

List of products 

Preliminary 

Prod 1  =  1 4 9 11 15 19 … 

Prod 2  =  2 5 8 11 14 22 … 

… 



Genetic algorithm overview 

Create random set of 

candidate portfolios 

1 4 9 11 15 19 

2 5 8 11 14 22 … 

Represent solution in 

terms of discrete parts 
Feature columns 

List of products 

Preliminary Start 
Represent solution in 

terms of discrete parts, 

aka “genes” 



Genetic algorithm overview 

Create random set of 

candidate portfolios 

Assign fitness (“share”) 

to each candidate in 

population 

1 4 9 11 15 19 = 58% share vs. fixed or “none” 

2 5 8 11 14 22 = 42% share vs. fixed or “none” 

Start 

1 4 9 11 15 19 

2 5 8 11 14 22 … 



Genetic algorithm overview 

Create random set of 

candidate portfolios 

Assign fitness (“share”) 

to each candidate in 

population 

Solution or 

population 

improving? 

Start 

1 4 9 11 15 19 = 58% share 

2 5 8 11 14 22 = 42% share 

No 

Yes 



Genetic algorithm overview 

Create random set of 

candidate portfolios 

Assign fitness (“share”) 

to each candidate in 

population 

Output best solution 

Solution or 

population 

improving? No 

Finished 

Start 

1 4 9 11 15 19 = 58% share 

2 5 8 11 14 22 = 42% share 
Yes 



Genetic algorithm overview 

Create random set of 

candidate portfolios 

Assign fitness (“share”) 

to each candidate in 

population 

Select, crossover, 

reproduce by fitness; 

mutate some 

Output best solution 

Solution or 

population 

improving? 

Yes 

No 

1 4 9 11 15 19 

2 5 8 11 14 22 … 

2 5 8 11 15 19 

1 4 9 11 16 22 … 

Finished 

Start 



Genetic algorithm overview 

Create random set of 

candidate portfolios 

Assign fitness (“share”) 

to each candidate in 

population 

Select, crossover, 

reproduce by fitness; 

mutate some 

Output best solution 

Solution or 

population 

improving? 

Create new population 

with best of old plus 

new 

Yes 

No 

2 5 8 11 15 19 

1 4 9 11 16 22 … 

1 4 9 11 15 19 = 74% share  

2 5 8 11 15 19 = 55% share 

Finished 

Start 



Genetic algorithm overview 

Create random set of 

candidate portfolios 

Assign fitness (“share”) 

to each candidate in 

population 

Select, crossover, 

reproduce by fitness; 

mutate some 

Output best solution 

Solution or 

population 

improving? 

Create new population 

with best of old plus 

new 

Yes 

No 

1 4 9 11 15 19 = 74% share  

2 5 8 11 15 19 = 55% share 

Finished 

Start 

Iterate 

Shown by Belloni et al to be able 

to find near-optimal result 

 
Belloni, Freund, Selove, Simester, “Optimizing product 

line designs: Efficient methods and comparisons,” 

Management science 54, no. 9 (2008).   



Details 
 Genome definition: 

Allele xn in [colstart, colend] = 1 product attribute 
Gene = collection of alleles = 1 product in portfolio = [x1, x2, … xq]  
Genome = [gene1, gene2 … genek] = portfolio of products        (k = portfolio size) 

 Data 
 Per-respondent part worth estimates from Sawtooth Software CBC and ACBC studies with hierarchical Bayes estimation 
 N=716 CBC & N=405 ACBC, US online samples 
 Bootstrap sampled 60% for model development, 40% holdout on each GA run 
 Total 9 attributes with 2-7 feature levels each 

 
 Algorithm & parameters 

 RGenoud algorithm from UC Berkeley, version 5.4-7 
 Solution represented as vector of integers mapped to columns,  i.e., length of (8 integers/product) × (portfolio size) 
 GA population size = 400, Maximum generations = 50, Wait generations = 10 
 Operators = equally divided among: Cloning, Uniform Mutation, Boundary mutation, Non-Uniform Mutation, Simple 

Crossover, Whole Non-Uniform Mutation, Heuristic Crossover 
 

 Fitness 
 Fitness function = total product share vs. “none” for portfolio, in development sample 
 Based on conjoint analysis data (hierarchical Bayes logit model, main effects only, per respondent) 
 Reported results = fitness performance of GA solution in holdout sample 

 
 Repetitions 

 50 GA runs each with new sampling for (CBC + ACBC datasets) × (k=1,2,4,6,8,10,12,16,20 products per portfolio) 
 50 runs × 2 data sets × 9 sizes = 900 total “best portfolios” selected from space of ≈18,000,000 portfolios searched 



 
Findings 



Q: What portfolio size meets users’ needs? 
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Portfolio size in # of products 

Proportion of people finding at least one 
acceptable choice, by portfolio size 

ACBC data

CBC data
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Sharply diminishing return in total 

preference for k>6 products 

Additional products above k>6 yield 

less than 1% additional preference 

share per product 



Q: What is the range of preference by feature? 

 Suppose we have an attribute of particular interest: 
E.g., Attribute 2/Feature level 2 

 MNL estimates preference, but does not account for limits of portfolio 
optimization 

 Estimate Feature demand | Portfolio structure within preferred portfolios 

 Demand(feature|portfolio) =   if Feature in prodi:  𝑃𝑖 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠ℎ𝑎𝑟𝑒
otherwise:   0

𝑘
𝑖=1  

 Example:  
Attr2/Feat 2 has 35% MNL share, but it might differ in an optimal portfolio. 
What would it be in a near-ideal portfolio? 



Q: What is the range of preference by feature? 
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Summed preference share by feature across 6-8 product portfolios 

80 % High

80 % Low

Average

Attr 1 Attr 2 Attr 3 Attr 4 

(brand and price not shown) 

Attr 5 Attr 6 Attr 7 

Attr 2-2 gets 14-43% share 

depending on the portfolio, 

with mean estimate = 29% 



Q: Are there specific product opportunities? 

Product  Proportion of all 
portfolios (N=800, K≥4) 

Feature codes  
(excluding brand and price) 

1 0.76 2111112 

2 0.47 1311512 

3 0.45 3211422 

4 0.26 1121512 

5 0.23 2111111 

6 0.22 3211122 

7 0.21 3111412 

List the products by frequency across portfolios 
Are there products that often appear, but we don’t make? 
 

Two products often 
appear that are not 
part of our portfolio 
 

Attr 2 Attr 6 

The key is the 
combination of 
attributes 2 + 6 



Q: Are there commonly-appearing price bands? 

 Less interest than we had expected at Price 1 and Prices 11-13 
 customers less interested in minimal or maximal products, 
 but want a mix of features at well-defined price points 
 

 Revised our concept of “good / better / best” lineup in this category 
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Conclusions 

 Don’t make more than 6-8 products in this category 
(unless the cost is less than the value of 1% share) 
 

 Knowing how many people should be interested in each feature 
 target underperforming features 
 

 Investigate product gaps that appear in optimal portfolios 
 

 Ensure price point concepts match the portfolios’ demand 
 

 Do more of this kind of modeling! (It works with existing data) 



 
Discussion 



Questions and limitations 

 Are the results stable across datasets and categories? 
Can we reliably aggregate portfolios in this way? 
 

 How do IIA issues play into the aggregation? 
 

 How does this approach relate to others, e.g., from 
financial portfolio models? 
 

 Recommendation:  
Use for hypothesis generation, not for “the answer” 
 

 Computationally very intensive:  
can take days to run on a multicore machine 

 



Availability of the code 

 Complete code example available: 
chris.chapman@microsoft.com 
 

 Written in R.  Must be customized for your problem. 
 

 Options: 
 Use HB draws; Gumbel error; bootstrapping; tuning 
 Preference by logit share, first-choice, roulette-draw first choice 

 
(Note: research code has no warranty; evaluate for yourself.) 

 

 Thank you! 
Sawtooth Software 
Conference 2010 SSC 2010 



 
Appendix: CBC vs. ACBC Observations 



CBC vs. ACBC 

 Strikingly similar results on portfolio size 
 

 ACBC used smaller sample (but did not try the 
reverse with CBC sample size) 
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CBC vs. ACBC 

 Strikingly similar results on portfolio size 
 

 ACBC used smaller sample (but did not try the reverse 
with CBC sample size) 
 

 ACBC had more consistency than CBC on price banding 
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CBC vs. ACBC 

 Strikingly similar results on portfolio size 
 

 ACBC used smaller sample (but did not try the reverse with CBC 
sample size) 
 

 ACBC had more consistency than CBC on price banding 
 

 Conclusion: 
ACBC data appears to be at least as good as CBC for this 
ACBC may have a slight edge 
 Stakeholder face validity 
 Smaller samples needed 
 Respondent engagement 
 Cleaner results across price banding in this study 


