Product Portfolio Evaluation Using Choice Modeling and Genetic Algorithms

Chris Chapman, PhD
James Alford, PhD

Microsoft Hardware

\square PC accessories sold worldwide through retail and PC makers
\square Product design and management in Redmond, Washington

- Specific product line and attributes are disguised here

The problem space

- Given conjoint analysis data ...

773	28	-0.237	-0.351	0.588	-0.312	-0.397	0.431	0.278	0.981
797	28	-0.513	-0.104	0.618	2.057	-0.966	-0.146	-0.944	3.685
724	28	-0.852	0.666	0.185	-2.546	0.186	1.033	1.327	0.088
803	28	-0.396	0.435	-0.039	5.356	-1.503	-1.644	-2.209	0.743
532	28	-0.334	0.337	-0.003	-3.71	1.422	1.33	0.958	-0.336
728	28	-0.786	0.469	0.317	0.518	-0.399	0.151	-0.27	0.42

- We know how to optimize a product
- But what about a product line?
- If we knew about potential ideal lines, what could we do?

Business questions

- We make X\# products in a category ... How many products should we make in the category?
- Some people buy feature Y and some don't ... How many can we expect to want feature Y in an optimal portfolio?
- We make products with such-and-such feature sets ... Are there feature sets (products) we are missing?
- Current retail price points are A, B, C ... Do those price points match the optimal products?

Intuition

\square Suppose we can derive a putative optimal line from data ...
\square Sampling is not perfect
Respondents do not answer perfectly Estimation will not fit the data perfectly Choices do not perfectly predict behavior
\square Implication:
A single result will be imperfect

\square Use near-optimal line as a hypothesis to explore further
\square Repeat multiple times to get a sense of generalizability

Method

Overview of the approach

- Collect CBC or ACBC data for a product category
- Derive individual-level part worths using HB model
- Iterate to fit many portfolio preference models:
- Sample some of the data
- Find a near-optimal portfolio to fit \longleftarrow How?
- Assess performance on the holdout data
- Performance $=$ Total Preference share vs. competition and "none"
- Across the many models, inspect:
- Size: how does preference increase with \#products?
- Features: how many people want each feature?
- Products: are there gaps vs. current portfolio?

Finding a near-optimal portfolio

\square Given several attributes with several levels ... Many possible products, which combine for Exponentially many portfolios

- For our problem:

9 attributes with 2-7 levels $\rightarrow 1080$ possible products
\square For K products: NofPortfolios $=\frac{(\text { NofProducts })!}{(\text { NofProducts } K)!K!}$

- With 1080 products and $K=10$, NofPortfolios $\approx 10^{23}$
- Implication:

Use a method that can search a large space $\boldsymbol{\rightarrow}$ Genetic Algorithm

Genetic Algorithms

Genetic algorithm overview

Preliminary

Represent solution in terms of discrete parts, aka "genes"

From features to a list of candidate portfolios

- Product $=$ list of attribute/feature pairs

From features to a list of candidate portfolios

\square Product = list of attribute/feature pairs

- Each attribute/feature maps to part worths located in a specific column
$\square \quad$ Product = vector of the column positions that represent its features

Attr1Feat2 + Attr2Feat1 + Attr3Feat2
$\mathrm{Col} 2+\operatorname{Col} 5+\mathrm{Col} 10^{\downarrow}$
[2,5,10]

From features to a list of candidate portfolios

\square Product = list of attribute/feature pairs
\square Each attribute/feature maps to part worths located in a specific column

- Product = vector of the column positions that represent its features
\square Portfolio = a set of products

Attr1Feat2 + Attr2Feat1 + Attr3Feat2
$\mathrm{Col} 2+\operatorname{Col} 5+\mathrm{Col} 10^{\downarrow}$

[2,5,10]

$[2,5,10]+[1,5,9]+[2,6,10]+\ldots$

From features to a list of candidate portfolios

\square Product = list of attribute/feature pairs
\square Each attribute/feature maps to part worths located in a specific column

- Product = vector of the column positions that represent its features
- Portfolio = a set of products
- Candidates = a stack of portfolios, each with several products

Attr1Feat2 + Attr2Feat1 + Attr3Feat2

[2,5,10]

- $\# 1:[2,5,10]+[1,5,9]+[2,6,10]+\ldots$ (1) \#2: $[1,5,9]+[2,6,10]+[1,6,9]+\ldots$

Genetic algorithm overview

Preliminary

Feature columns

List of products
Represent solution in terms of discrete parts, aka "genes"

```
Prod 1 = 1 4 9 11 15 19
Prod 2 = 2 5 8 11 14 22
```


Genetic algorithm overview

Start 4 "\#"			Preliminary
Create random set of candidate portfolios	$\begin{array}{lllllll} 1 & 4 & 9 & 11 & 15 & 19 & \\ 2 & 5 & 8 & 11 & 14 & 22 & \ldots \end{array}$	Feature columns". List of products	Represent solution in terms of discrete parts, aka "genes"

Genetic algorithm overview

Start

Output best solution
Finished
Create new population
with best of old plus
new

Select, crossover, reproduce by fitness; mutate some

$$
\begin{array}{llllll}
2 & 5 & 8 & 11 & 15 & 19 \\
1 & 4 & 9 & 11 & 16 & 22
\end{array}
$$

Genetic algorithm overview

Start

Shown by Belloni et al to be able to find near-optimal result

Belloni, Freund, Selove, Simester, "Optimizing product line designs: Efficient methods and comparisons," Management science 54, no. 9 (2008).

Details

- Genome definition:

Allele x_{n} in $\left[\mathrm{col}_{\text {start }}, \mathrm{col}_{\text {end }}\right]=1$ product attribute
Gene $=$ collection of alleles $=1$ product in portfolio $=\left[x_{1}, x_{2}, \ldots x_{q}\right]$
Genome $=\left[\right.$ gene $_{1}$, gene $_{2} \ldots$ gene $\left._{k}\right]=$ portfolio of products $\quad(k=$ portfolio size $)$

- Data
- Per-respondent part worth estimates from Sawtooth Software CBC and ACBC studies with hierarchical Bayes estimation
- $\mathrm{N}=716$ CBC \& $\mathrm{N}=405$ ACBC, US online samples
- Bootstrap sampled 60% for model development, 40% holdout on each GA run
- Total 9 attributes with 2-7 feature levels each
- Algorithm \& parameters
- RGenoud algorithm from UC Berkeley, version 5.4-7
- Solution represented as vector of integers mapped to columns, i.e., length of (8 integers $/$ product) \times (portfolio size)
- GA population size $=400$, Maximum generations $=50$, Wait generations $=10$
- Operators = equally divided among: Cloning, Uniform Mutation, Boundary mutation, Non-Uniform Mutation, Simple Crossover, Whole Non-Uniform Mutation, Heuristic Crossover
- Fitness
- Fitness function = total product share vs. "none" for portfolio, in development sample
- Based on conjoint analysis data (hierarchical Bayes logit model, main effects only, per respondent)
- Reported results = fitness performance of GA solution in holdout sample
- Repetitions
- 50 GA runs each with new sampling for (CBC + ACBC datasets) $\times(\mathbf{k}=\mathbf{1 , 2 , 4 , 6 , 8 , 1 0 , 1 2 , 1 6 , 2 0}$ products per portfolio)

50 runs $\times 2$ data sets $\times 9$ sizes $=900$ total "best portfolios" selected from space of $\approx 18,000,000$ portfolios searched

Findings

Q: What portfolio size meets users' needs?

Proportion of people finding at least one acceptable choice, by portfolio size

- ACBC data
- CBC data

Change in total \% preference, by size

Additional products above $\mathrm{k}>6$ yield less than 1% additional preference share per product

Sharply diminishing return in total preference for $\mathrm{k}>6$ products

Q: What is the range of preference by feature?

- Suppose we have an attribute of particular interest:
E.g., Attribute 2/Feature level 2
- MNL estimates preference, but does not account for limits of portfolio optimization
\square Estimate Feature demand | Portfolio structure within preferred portfolios
\square Demand(feature \mid portfolio $)=\sum_{i=1}^{k}\binom{$ if Feature in prodi: Pi preference share }{ otherwise: 0}
- Example:

Attr2/Feat 2 has 35% MNL share, but it might differ in an optimal portfolio. What would it be in a near-ideal portfolio?

$\mathrm{Q}:$ What is the range of preference by feature?

Summed preference share by feature across 6-8 product portfolios

Q: Are there specific product opportunities?

List the products by frequency across portfolios Are there products that often appear, but we don't make?

Product	Proportion of all portfolios $(\mathrm{N}=800, \mathrm{~K} \geq 4)$	Feature codes (excluding brand and price)
1	0.76	211112
2	0.47	1311512
3	0.45	3211422
4	0.26	1121512
5	0.23	2111111
6	0.22	3211122
7	0.21	311412

Two products often appear that are not part of our portfolio

The key is the combination of attributes $2+6$

Q: Are there commonly-appearing price bands?

\square Less interest than we had expected at Price 1 and Prices 11-13
\rightarrow customers less interested in minimal or maximal products, but want a mix of features at well-defined price points
\square Revised our concept of "good / better / best" lineup in this category

Distribution by price \& portfolio size (ACBC)

Conclusions

- Don't make more than $6-8$ products in this category (unless the cost is less than the value of 1% share)
- Knowing how many people should be interested in each feature \rightarrow target underperforming features
- Investigate product gaps that appear in optimal portfolios
\square Ensure price point concepts match the portfolios' demand
- Do more of this kind of modeling! (It works with existing data)

Discussion

Questions and limitations

- Are the results stable across datasets and categories? Can we reliably aggregate portfolios in this way?
\square How do IIA issues play into the aggregation?
\square How does this approach relate to others, e.g., from financial portfolio models?
\square Recommendation:
Use for hypothesis generation, not for "the answer"
\square Computationally very intensive: can take days to run on a multicore machine

Availability of the code

- Complete code example available: chris.chapman@microsoft.com
\square Written in R. Must be customized for your problem.
- Options:
- Use HB draws; Gumbel error; bootstrapping; tuning
- Preference by logit share, first-choice, roulette-draw first choice
sel sp de in. -" "random")
(Note: research code has no warranty; evaluate for yourself.)

Appendix: CBC vs. ACBC Observations

CBC vs. ACBC

\square Strikingly similar results on portfolio size

- ACBC used smaller sample (but did not try the reverse with CBC sample size)

Change in total \% preference, by size

Proportion of people finding at least one acceptable choice, by portfolio size

CBC vs. ACBC

\square Strikingly similar results on portfolio size

- ACBC used smaller sample (but did not try the reverse with CBC sample size)
\square ACBC had more consistency than CBC on price banding

Distribution by price \& portfolio size (ACBC)

CBC vs. ACBC

- Strikingly similar results on portfolio size
- ACBC used smaller sample (but did not try the reverse with CBC sample size)
\square ACBC had more consistency than CBC on price banding
\square Conclusion:
ACBC data appears to be at least as good as CBC for this ACBC may have a slight edge
- Stakeholder face validity
- Smaller samples needed
- Respondent engagement
- Cleaner results across price banding in this study

