
Product Portfolio Evaluation
Using Choice Modeling and Genetic Algorithms

Chris Chapman, PhD
James Alford, PhD

Sawtooth Software
Conference 2010 SSC 2010

Microsoft Hardware

 PC accessories sold worldwide through retail and PC makers
 Product design and management in Redmond, Washington

 Specific product line and attributes are disguised here

The problem space

 Given conjoint analysis data …

 We know how to optimize a product

 But what about a product line?

 If we knew about potential ideal lines, what could we do?

1 773 28 -0.237 -0.351 0.588 -0.312 -0.397 0.431 0.278 0.981
2 797 28 -0.513 -0.104 0.618 2.057 -0.966 -0.146 -0.944 3.685
3 724 28 -0.852 0.666 0.185 -2.546 0.186 1.033 1.327 0.088
4 803 28 -0.396 0.435 -0.039 5.356 -1.503 -1.644 -2.209 0.743
5 532 28 -0.334 0.337 -0.003 -3.71 1.422 1.33 0.958 -0.336
6 728 28 -0.786 0.469 0.317 0.518 -0.399 0.151 -0.27 0.42

Business questions

 We make X# products in a category …
How many products should we make in the category?

 Some people buy feature Y and some don’t …
How many can we expect to want feature Y in an optimal portfolio?

 We make products with such-and-such feature sets …
Are there feature sets (products) we are missing?

 Current retail price points are A, B, C …
Do those price points match the optimal products?

Intuition

 Suppose we can derive a putative optimal line from data …

 Sampling is not perfect

Respondents do not answer perfectly
Estimation will not fit the data perfectly
Choices do not perfectly predict behavior

 Implication:
A single result will be imperfect

 Use near-optimal line as a hypothesis to explore further
 Repeat multiple times to get a sense of generalizability

Method

Overview of the approach

 Collect CBC or ACBC data for a product category
 Derive individual-level part worths using HB model

 Iterate to fit many portfolio preference models:

 Sample some of the data
 Find a near-optimal portfolio to fit
 Assess performance on the holdout data
 Performance = Total Preference share vs. competition and “none”

 Across the many models, inspect:

 Size: how does preference increase with #products?
 Features: how many people want each feature?
 Products: are there gaps vs. current portfolio?

How?

Finding a near-optimal portfolio

 Given several attributes with several levels …
Many possible products, which combine for
Exponentially many portfolios

 For our problem:
9 attributes with 2-7 levels  1080 possible products

 For K products: 𝑁𝑜𝑓𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜𝑠 = (𝑁𝑜𝑓𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠)!

𝑁𝑜𝑓𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠−𝐾 !𝐾!

 With 1080 products and K=10, NofPortfolios ≈ 1023

 Implication:
Use a method that can search a large space  Genetic Algorithm

Genetic Algorithms

Genetic algorithm overview

Represent solution in

terms of discrete parts,

aka “genes”

Preliminary

Attr1Feat2 + Attr2Feat1 + Attr3Feat2

From features to a list of candidate portfolios

 Product = list of attribute/feature pairs

Attr1Feat2 + Attr2Feat1 + Attr3Feat2

Col 2 + Col 5 + Col 10

[2,5,10]

From features to a list of candidate portfolios

 Product = list of attribute/feature pairs

 Each attribute/feature maps to part
worths located in a specific column

 Product = vector of the column positions
that represent its features

Attr1Feat2 + Attr2Feat1 + Attr3Feat2

Col 2 + Col 5 + Col 10

[2,5,10]

[2,5,10] + [1,5,9] + [2,6,10] + …

From features to a list of candidate portfolios

 Product = list of attribute/feature pairs

 Each attribute/feature maps to part
worths located in a specific column

 Product = vector of the column positions
that represent its features

 Portfolio = a set of products

Attr1Feat2 + Attr2Feat1 + Attr3Feat2

Col 2 + Col 5 + Col 10

[2,5,10]

[2,5,10] + [1,5,9] + [2,6,10] + …

#1: [2,5,10] + [1,5,9] + [2,6,10] + …
#2: [1,5,9] + [2,6,10] + [1,6,9] + …
….

From features to a list of candidate portfolios

 Product = list of attribute/feature pairs

 Each attribute/feature maps to part
worths located in a specific column

 Product = vector of the column positions
that represent its features

 Portfolio = a set of products

 Candidates = a stack of portfolios,
each with several products

Genetic algorithm overview

Represent solution in

terms of discrete parts,

aka “genes”

Feature columns

List of products

Preliminary

Prod 1 = 1 4 9 11 15 19 …

Prod 2 = 2 5 8 11 14 22 …

…

Genetic algorithm overview

Create random set of

candidate portfolios

1 4 9 11 15 19

2 5 8 11 14 22 …

Represent solution in

terms of discrete parts
Feature columns

List of products

Preliminary Start
Represent solution in

terms of discrete parts,

aka “genes”

Genetic algorithm overview

Create random set of

candidate portfolios

Assign fitness (“share”)

to each candidate in

population

1 4 9 11 15 19 = 58% share vs. fixed or “none”

2 5 8 11 14 22 = 42% share vs. fixed or “none”

Start

1 4 9 11 15 19

2 5 8 11 14 22 …

Genetic algorithm overview

Create random set of

candidate portfolios

Assign fitness (“share”)

to each candidate in

population

Solution or

population

improving?

Start

1 4 9 11 15 19 = 58% share

2 5 8 11 14 22 = 42% share

No

Yes

Genetic algorithm overview

Create random set of

candidate portfolios

Assign fitness (“share”)

to each candidate in

population

Output best solution

Solution or

population

improving? No

Finished

Start

1 4 9 11 15 19 = 58% share

2 5 8 11 14 22 = 42% share
Yes

Genetic algorithm overview

Create random set of

candidate portfolios

Assign fitness (“share”)

to each candidate in

population

Select, crossover,

reproduce by fitness;

mutate some

Output best solution

Solution or

population

improving?

Yes

No

1 4 9 11 15 19

2 5 8 11 14 22 …

2 5 8 11 15 19

1 4 9 11 16 22 …

Finished

Start

Genetic algorithm overview

Create random set of

candidate portfolios

Assign fitness (“share”)

to each candidate in

population

Select, crossover,

reproduce by fitness;

mutate some

Output best solution

Solution or

population

improving?

Create new population

with best of old plus

new

Yes

No

2 5 8 11 15 19

1 4 9 11 16 22 …

1 4 9 11 15 19 = 74% share

2 5 8 11 15 19 = 55% share

Finished

Start

Genetic algorithm overview

Create random set of

candidate portfolios

Assign fitness (“share”)

to each candidate in

population

Select, crossover,

reproduce by fitness;

mutate some

Output best solution

Solution or

population

improving?

Create new population

with best of old plus

new

Yes

No

1 4 9 11 15 19 = 74% share

2 5 8 11 15 19 = 55% share

Finished

Start

Iterate

Shown by Belloni et al to be able

to find near-optimal result

Belloni, Freund, Selove, Simester, “Optimizing product

line designs: Efficient methods and comparisons,”

Management science 54, no. 9 (2008).

Details
 Genome definition:

Allele xn in [colstart, colend] = 1 product attribute
Gene = collection of alleles = 1 product in portfolio = [x1, x2, … xq]
Genome = [gene1, gene2 … genek] = portfolio of products (k = portfolio size)

 Data
 Per-respondent part worth estimates from Sawtooth Software CBC and ACBC studies with hierarchical Bayes estimation
 N=716 CBC & N=405 ACBC, US online samples
 Bootstrap sampled 60% for model development, 40% holdout on each GA run
 Total 9 attributes with 2-7 feature levels each

 Algorithm & parameters

 RGenoud algorithm from UC Berkeley, version 5.4-7
 Solution represented as vector of integers mapped to columns, i.e., length of (8 integers/product) × (portfolio size)
 GA population size = 400, Maximum generations = 50, Wait generations = 10
 Operators = equally divided among: Cloning, Uniform Mutation, Boundary mutation, Non-Uniform Mutation, Simple

Crossover, Whole Non-Uniform Mutation, Heuristic Crossover

 Fitness
 Fitness function = total product share vs. “none” for portfolio, in development sample
 Based on conjoint analysis data (hierarchical Bayes logit model, main effects only, per respondent)
 Reported results = fitness performance of GA solution in holdout sample

 Repetitions

 50 GA runs each with new sampling for (CBC + ACBC datasets) × (k=1,2,4,6,8,10,12,16,20 products per portfolio)
 50 runs × 2 data sets × 9 sizes = 900 total “best portfolios” selected from space of ≈18,000,000 portfolios searched

Findings

Q: What portfolio size meets users’ needs?

60%

65%

70%

75%

80%

85%

1 2 4 6 8 10 12 16

Portfolio size in # of products

Proportion of people finding at least one
acceptable choice, by portfolio size

ACBC data

CBC data

0%

1%

2%

3%

4%

5%

6%

7%

2 4 6 8 10 12 16

Change in total % preference, by size

ACBC data

CBC data

Sharply diminishing return in total

preference for k>6 products

Additional products above k>6 yield

less than 1% additional preference

share per product

Q: What is the range of preference by feature?

 Suppose we have an attribute of particular interest:
E.g., Attribute 2/Feature level 2

 MNL estimates preference, but does not account for limits of portfolio
optimization

 Estimate Feature demand | Portfolio structure within preferred portfolios

 Demand(feature|portfolio) = if Feature in prodi: 𝑃𝑖 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠ℎ𝑎𝑟𝑒
otherwise: 0

𝑘
𝑖=1

 Example:
Attr2/Feat 2 has 35% MNL share, but it might differ in an optimal portfolio.
What would it be in a near-ideal portfolio?

Q: What is the range of preference by feature?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Summed preference share by feature across 6-8 product portfolios

80 % High

80 % Low

Average

Attr 1 Attr 2 Attr 3 Attr 4

(brand and price not shown)

Attr 5 Attr 6 Attr 7

Attr 2-2 gets 14-43% share

depending on the portfolio,

with mean estimate = 29%

Q: Are there specific product opportunities?

Product Proportion of all
portfolios (N=800, K≥4)

Feature codes
(excluding brand and price)

1 0.76 2111112

2 0.47 1311512

3 0.45 3211422

4 0.26 1121512

5 0.23 2111111

6 0.22 3211122

7 0.21 3111412

List the products by frequency across portfolios
Are there products that often appear, but we don’t make?

Two products often
appear that are not
part of our portfolio

Attr 2 Attr 6

The key is the
combination of
attributes 2 + 6

Q: Are there commonly-appearing price bands?

 Less interest than we had expected at Price 1 and Prices 11-13
 customers less interested in minimal or maximal products,
 but want a mix of features at well-defined price points

 Revised our concept of “good / better / best” lineup in this category

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Price
1

Price
2

Price
3

Price
4

Price
5

Price
6

Price
7

Price
8

Price
9

Price
10

Price
11

Price
12

Price
13

Distribution by price & portfolio size (ACBC)

2

4

6

8

10

12

16
0%

5%

10%

15%

20%

25%

Price
1

Price
2

Price
3

Price
4

Price
5

Price
6

Price
7

Price
8

Price
9

Price
10

Price
11

Price
12

Price
13

CBC

Conclusions

 Don’t make more than 6-8 products in this category
(unless the cost is less than the value of 1% share)

 Knowing how many people should be interested in each feature
 target underperforming features

 Investigate product gaps that appear in optimal portfolios

 Ensure price point concepts match the portfolios’ demand

 Do more of this kind of modeling! (It works with existing data)

Discussion

Questions and limitations

 Are the results stable across datasets and categories?
Can we reliably aggregate portfolios in this way?

 How do IIA issues play into the aggregation?

 How does this approach relate to others, e.g., from
financial portfolio models?

 Recommendation:
Use for hypothesis generation, not for “the answer”

 Computationally very intensive:
can take days to run on a multicore machine

Availability of the code

 Complete code example available:
chris.chapman@microsoft.com

 Written in R. Must be customized for your problem.

 Options:
 Use HB draws; Gumbel error; bootstrapping; tuning
 Preference by logit share, first-choice, roulette-draw first choice

(Note: research code has no warranty; evaluate for yourself.)

 Thank you!
Sawtooth Software
Conference 2010 SSC 2010

Appendix: CBC vs. ACBC Observations

CBC vs. ACBC

 Strikingly similar results on portfolio size

 ACBC used smaller sample (but did not try the
reverse with CBC sample size)

60%

65%

70%

75%

80%

85%

1 2 4 6 8 10 12 16

Portfolio size in # of products

Proportion of people finding at least one
acceptable choice, by portfolio size

ACBC data

CBC data

0%

1%

2%

3%

4%

5%

6%

7%

2 4 6 8 10 12 16

Change in total % preference, by size

ACBC data

CBC data

CBC vs. ACBC

 Strikingly similar results on portfolio size

 ACBC used smaller sample (but did not try the reverse
with CBC sample size)

 ACBC had more consistency than CBC on price banding

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Price
1

Price
2

Price
3

Price
4

Price
5

Price
6

Price
7

Price
8

Price
9

Price
10

Price
11

Price
12

Price
13

Distribution by price & portfolio size (ACBC)

2

4

6

8

10

12

16
0%

5%

10%

15%

20%

25%

Price
1

Price
2

Price
3

Price
4

Price
5

Price
6

Price
7

Price
8

Price
9

Price
10

Price
11

Price
12

Price
13

CBC

CBC vs. ACBC

 Strikingly similar results on portfolio size

 ACBC used smaller sample (but did not try the reverse with CBC
sample size)

 ACBC had more consistency than CBC on price banding

 Conclusion:
ACBC data appears to be at least as good as CBC for this
ACBC may have a slight edge
 Stakeholder face validity
 Smaller samples needed
 Respondent engagement
 Cleaner results across price banding in this study

